Loss of the hepatic glycogen-binding subunit (GL) of protein phosphatase 1 underlies deficient glycogen synthesis in insulin-dependent diabetic rats and in adrenalectomized starved rats.

نویسندگان

  • M J Doherty
  • J Cadefau
  • W Stalmans
  • M Bollen
  • P T Cohen
چکیده

Hepatic glycogen synthesis is impaired in insulin-dependent diabetic rats and in adrenalectomized starved rats, and although this is known to be due to defective activation of glycogen synthase by glycogen synthase phosphatase, the underlying molecular mechanism has not been delineated. Glycogen synthase phosphatase comprises the catalytic subunit of protein phosphatase 1 (PP1) complexed with the hepatic glycogen-binding subunit, termed GL. In liver extracts of insulin-dependent diabetic and adrenalectomized starved rats, the level of GL was shown by immunoblotting to be substantially reduced compared with that in control extracts, whereas the level of PP1 catalytic subunit was not affected by these treatments. Insulin administration to diabetic rats restored the level of GL and prolonged administration raised it above the control levels, whereas re-feeding partially restored the GL level in adrenalectomized starved rats. The regulation of GL protein levels by insulin and starvation/feeding was shown to correlate with changes in the level of the GL mRNA, indicating that the long-term regulation of the hepatic glycogen-associated form of PP1 by insulin, and hence the activity of hepatic glycogen synthase, is predominantly mediated through changes in the level of the GL mRNA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The level of the glycogen targetting regulatory subunit R5 of protein phosphatase 1 is decreased in the livers of insulin-dependent diabetic rats and starved rats.

Hepatic glycogen synthesis is impaired in insulin-dependent diabetic rats owing to defective activation of glycogen synthase by glycogen-bound protein phosphatase 1 (PP1). The identification of three glycogen-targetting subunits in liver, G(L), R5/PTG and R6, which form complexes with the catalytic subunit of PP1 (PP1c), raises the question of whether some or all of these PP1c complexes are sub...

متن کامل

Glycogen synthesis in the perfused liver of streptozotocin-diabetic rats.

1. Net glycogen accumulation was measured in sequentially removed samples during perfusion of the liver of starved streptozotocin-diabetic rats, and shown to be significantly impaired, compared with rates in normal (starved) rats. 2. In perfusions of normal livers with glucose plus C3 substrates, there was an increase in the proportion of glycogen synthetase 'a', compared with that in the absen...

متن کامل

Succinic Acid Monoethyl Ester and Metformin Regulates Carbohydrate Metabolic Enzymes and Improves Glycemic Control in Streptozotocin-Nicotinamide Induced Type2 Diabetic Rats

Objective. Succnic acid mono ethyl ester (EMS) was recently proposed as an insulinotropic agent for the treatment of non-insulin dependent diabetes mellitus. In the present study the effect of EMS and Metformin on the activities of carbohydrate metabolic enzymes in streptozotocinnicotinamide induced type 2 diabeteic model was investigated. Methods. EMS were injected intraperitonially at doses 2...

متن کامل

Reversal of diet-induced glucose intolerance by hepatic expression of a variant glycogen-targeting subunit of protein phosphatase-1.

Glycogen-targeting subunits of protein phosphatase-1 facilitate interaction of the phosphatase with enzymes of glycogen metabolism. Expression of one family member, PTG, in the liver of normal rats improves glucose tolerance without affecting other plasma variables but leaves animals unable to reduce hepatic glycogen stores in response to fasting. In the current study, we have tested whether ex...

متن کامل

Pyrrolidine dithiocarbamate enhances hepatic glycogen synthesis and reduces FoxO1-mediated gene transcription in type 2 diabetic rats.

The aim of the present study was to examine the effects of pyrrolidine dithiocarbamate (PDTC) on hepatic glycogen synthesis and FoxO1 transcriptional activity in type 2 diabetic rats and the mechanism underlying these effects. Fasting blood glucose and glycogen deposition, together with expressions of two key genes related to gluconeogenesis, were studied in the liver of rats fed a normal diet ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 333 ( Pt 2)  شماره 

صفحات  -

تاریخ انتشار 1998